

State of Michigan
 (SOM)

System Maintenance Guidebook (SMG)
Version 1.0

A Companion to the

Systems Engineering Methodology (SEM) of the
State Unified Information Technology Environment (SUITE)

August 2007

Michigan Department of Information Technology

 Preface

Date: August 2007 Preface Page i

PREFACE

This initial development of the System Maintenance Guidebook (SMG) was published in August 2007,
and was developed as part of a continuing effort to improve the quality, performance, and productivity
of State of Michigan information systems. Development of the SMG was governed by the Michigan
State Unified Information Technology Environment (SUITE) initiative.

The purpose of SUITE is to standardize methodologies, procedures, training, and tools for project
management and systems development lifecycle management throughout the Michigan Department of
Information Technology (MDIT) in order to implement repeatable processes and conduct development
activities according to Capability Maturity Model Integrated (CMMI) Level 3 requirements. A formal
enterprise level support structure will be created to support, improve and administer all SUITE
components, including the System Engineering Methodology (SEM), the SMG, the Project Management
Methodology (PMM) and related enterprise initiatives. Until that structure is in place, questions
regarding SMG should be sent to the SUITE Core Team at SUITE@michigan.gov.

mailto:wenskos@michigan.gov

 Preface

Date: August 2007 Preface Page ii

ACKNOWLEDGEMENTS

The State of Michigan would like to thank the following individuals and organizations that made this
version of the State of Michigan System Maintenance Guidebook possible. Without their input and hard
work, this would not have been achieved.

INITIAL RELEASE (August 2007)
Dan Buonodono, Project Management Specialist
MDIT Project Management Resource Center

Virginia Hambric, State Division Administrator,
MDIT Agency Services – Human Services and
MiCSES

Leigh A. Scherzer, Account and Project Manager,
Dedicated Customer Unit, MDIT Agency
Services – Department of Labor and Economic
Growth

Kyle Wilson, IT Specialist, Quality Assurance
Team, MDIT Agency Services-Transportation

ORGANIZATIONS
STATE OF MICHIGAN – DEPARTMENT OF INFORMATION TECHNOLOGY

U.S. DEPARTMENT OF ENERGY – OFFICE OF THE CHIEF INFORMATION OFFICER

The SMG Development Team owes a large debt to Brenda Coblentz of the U.S. Department of Energy
(DOE) for both her encouragement in our efforts and for permitting us the free use of the DOE’s own
CMMI Level 3 compliant SEM – Chapter 10 as a basis for this document. In particular, much of this
document draws directly from the DOE’s Systems Engineering Methodology, which as of this writing
can be found at (http://cio.energy.gov/documents/SEM3_1231.pdf).

http://cio.energy.gov/documents/SEM3_1231.pdf

 Table of Contents

Date: August 2007 Table of Contents Page iii

Chapter Page

Chapter: 1.0 Introduction...1
Section: 1.1 Background... 3
Section: 1.2 System Maintenance Definition and Categories... 4
Section: 1.3 System Maintenance Effort... 7
Section: 1.4 Call for Projects .. 9

Chapter: 2.0 Release Management ..11

Chapter: 3.0 System Maintenance ...17
Section: 3.1 Initiation and Planning Stage .. 23
Section: 3.2 Requirements Definition Stage ... 25
Section: 3.3 Design Stage ... 28
Section: 3.4 Construction Stage .. 30
Section: 3.5 Testing Stage... 32
Section: 3.6 Implementation Stage ... 34

Exhibit 1.4-1 Call for Projects Process Flow ... 9
Exhibit 2.0-1 Release Process Responsibilities and Interactions ... 13
Exhibit 2-0.2 Major, Minor and Emergency Releases.. 14
Exhibit 3.0-1 Process Model for Maintenance .. 21
Exhibit 3.0-2 Process Model Metrics for Maintenance .. 22
Exhibit 3.1-1 Initiation and Planning Stage .. 24
Exhibit 3.2-1 Requirements Definition Stage .. 27
Exhibit 3.3-1 Design Stage... 29
Exhibit 3.4-1 Construction Stage.. 31
Exhibit 3.5-1 System Testing... 33
Exhibit 3.5-2 Acceptance Testing ... 33
Exhibit 3.6-1 Implementation Stage ... 35
Glossary ... 37

 Table of Contents

Date: August 2007 Table of Contents Page iv

Page inserted for consistency in section start points.

Chapter 1.0 Introduction

Date: August 2007 Introduction Chapter 1
 Page 1

Chapter: 1.0 Introduction

Description: The System Maintenance Guidebook (SMG) is a set of iterative processes for

conducting system maintenance activities. Maintenance practice areas and their
subordinate processes prescribe a minimal set of criteria that are necessary for
project management and quality assurance processes, control, and management of
the planning, execution, and documentation of system maintenance activities. The
use of automated tools to facilitate requirements definition, design, coding, and
system documentation is encouraged. The correct selection and implementation of
tools varies among the various State of Michigan Department of Information
Technology (MDIT) sites and component organizations, and should be
coordinated through the MDIT Enterprise Architecture Solution Assessment
process.

The State of Michigan has a consistent Project Management Methodology (PMM)
in place which can be used for all types of projects. The State of Michigan also
has a consistent System Engineering Methodology (SEM) that is a companion to
the Project Management Methodology. The SMG is companion to both the PMM
and the SEM. Using these methodologies, staff can move comfortably from
applications development, to infrastructure roll out, to software selection to even
relocating to new buildings using the same approach throughout the organization.

 Significant input for the SMG was obtained from information management

programs throughout the country. The SMG integrates State of Michigan and
industry best practices and focuses on the quality of system maintenance
processes and the work products generated from the processes.

 The SMG is derived from the principles and standards advocated by information

management industry leaders, such as the Institute of Electrical and Electronics
Engineers (IEEE), the Carnegie Melon University Software Engineering Institute
(SEI), the Software Engineering Book of Knowledge (SWEBOK), and the
Department of Energy (DOE). This methodology is designed to enable State of
Michigan project teams to institute and maintain Level 3 maturity on the SEI
Capability Maturity Model Integrated (CMMI) process improvement approach.

 The SMG promotes the belief that the result of maintenance is system reliability

and the preservation and/or prolonging the life of system assets. The SMG
process model does not presume the use of any particular information systems
development strategy (e.g., waterfall, spiral). This process is valid regardless of
size, complexity, and criticality of the application being maintained.

Project
Management: To the extent possible, all maintenance and operations activities should be

managed as a project to gain the benefits inherent in project management and to
enable tracking of activities and costs. The extent of project management activity
will vary, and should be tailored according to the size, complexity, and impact of

Chapter 1.0 Introduction

Date: August 2007 Introduction Chapter 1
 Page 2

the change or enhancement. Refer to Chapter 1, pages 1-31 through 1-33 of the
Project Management Methodology (PMM) for more information on Project
Screening and Selection.

 The following sections provide additional information about the SMG:

1.1 Background
1.2 System Maintenance Definition and Categories
1.3 System Maintenance Effort
1.4 Call for Projects

Bibliography: The following materials and web sites were referenced in the preparation of this

guide.

1. State of Michigan Project Management Methodology:
http://www.michigan.gov/suite

2. Institute of Electrical and Electronics Engineers. IEEE Standard Computer
Dictionary: A Compilation of IEEE Standard Computer Glossaries. New
York, NY: 1990.

3. The Institute of Electrical and Electronics Engineers, Inc., IEEE Standard for
Developing Software Lifecycle Processes, IEEE Std 1074-1991, New York,
1992.

4. Michigan Department of Transportation Maintenance and Operations
Methodology.

5. U.S. Department of Energy, DOE/NV Software Management Plan, Nevada
Operations Office, May 1991.

6. U.S. Department of Energy, Software Management Guide, DOE/AD-0028,
1992.

7. Carnegie Mellon University, Software Engineering Institute, Capability
Maturity Model: Guidelines for Improving the Software Process, Addison
Wesley Longman, Inc., 1994.

8. http://www.inf.ed.ac.uk/teaching/courses/seoc/2006_2007/notes/LectureNote
18_SoftwareEvolution.pdf

9. http://www.sei.cmu.edu/productlines/glossary.html
10. http://www.usdoj.gov/jmd/irm/lifecycle/ch11.htm
11. http://thesource.ofallevil.com/technet/solutionaccelerators/cits/mo/smf/smfsy

sad.mspx
12. http://199.79.179.101/cadiv/segb/index.htm
13. http://en.wikipedia.org/wiki/Software_testing
14. http://en.wikipedia.org/wiki/Interface_%28computer_science%29
15. http://www.compaid.com/caiinternet/ezine/alainapril-maintenancemodel.pdf
16. http://onlinepubs.trb.org/onlinepubs/nchrp/optime/optimeusersguide.pdf
17. http://en.wkipedia.org/wiki/Release_Management

http://www.michigan.gov/suite
http://www.inf.ed.ac.uk/teaching/courses/seoc/2006_2007/notes/LectureNote18_SoftwareEvolution.pdf
http://www.inf.ed.ac.uk/teaching/courses/seoc/2006_2007/notes/LectureNote18_SoftwareEvolution.pdf
http://www.sei.cmu.edu/productlines/glossary.html
http://www.usdoj.gov/jmd/irm/lifecycle/ch11.htm
http://thesource.ofallevil.com/technet/solutionaccelerators/cits/mo/smf/smfsysad.mspx
http://thesource.ofallevil.com/technet/solutionaccelerators/cits/mo/smf/smfsysad.mspx
http://199.79.179.101/cadiv/segb/index.htm
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Interface_%28computer_science%29
http://www.compaid.com/caiinternet/ezine/alainapril-maintenancemodel.pdf
http://onlinepubs.trb.org/onlinepubs/nchrp/optime/optimeusersguide.pdf
http://en.wkipedia.org/wiki/Release_Management

1.1 Background Introduction

Date: August 2007 Introduction Chapter 1
 Page 3

Section: 1.1 Background

Description: Software maintenance is an integral part of any systems engineering lifecycle. In

the past, however, it has not received the same degree of attention as the other
lifecycle stages. Historically, systems development has had a much higher profile
than systems maintenance in most organizations. This is now changing, as
organizations strive to squeeze the most out of their systems development
investments by keeping software systems operating as long as possible. Concerns
about the Year 2000 rollover focused significant attention on the maintenance
phase, and the Open Source paradigm has brought further attention to the issue of
maintaining software artifacts developed by others.

 Broadly speaking, systems maintenance is the totality of activities required to

provide cost-effective support to systems. Activities that lay the ground work for
system maintenance are performed during all stages of the MDIT Systems
Engineering Methodology (SEM).

 Maintenance is needed to ensure that the system continues to satisfy user

requirements. Maintenance is applicable to systems developed using any systems
engineering methodology (e.g., waterfall). Maintenance must be performed in
order to:

• Correct faults
• Improve the design
• Adapt systems so that different hardware, software, system features, and

telecommunications facilities can be used
• Improve performance
• Maintain operational status

 Project managers should bear in mind that the size and/or complexity of proposed

maintenance may be of such a magnitude that it should be conducted as a new
development project using the full SEM.

1.2 System Maintenance Definitions and Categories Introduction

Date: August 2007 Introduction Chapter 1
 Page 4

Section: 1.2 System Maintenance Definition and Categories

Maintenance
Definition: The Institute of Electrical and Electronics Engineers (IEEE) definition of software

maintenance states that:

“Software maintenance is the process of supporting a software
product or system after implementation to maintain operational
status, correct faults, improve performance or other attributes, or
adapt to a changed environment.”

 This definition reflects the historic common view that software maintenance is a

post-implementation activity: it starts when a system is released to the client or
user and encompasses all activities that keep the system operational and meet the
user’s needs. This view is well summarized by the classic waterfall models of the
systems engineering methodology, which generally comprise a final phase of
maintenance and operations.

 It is essential, however, to adopt a lifecycle approach to managing and changing

software systems, one which looks at all aspects of the development process with
an eye toward maintenance. Thomas M. Pigoski, founder and CEO of TechSoft
and member of the IEEE panel for development of a single software maintenance
standard, captures the need to begin maintenance when development begins in a
new, more inclusive definition:

 “Software maintenance is the totality of activities required to

provide cost-effective support to a software system. Activities are
performed during the pre-delivery stage as well as the post-
delivery stage. Pre-delivery activities include planning for post-
delivery operations, supportability, and logistics determination.
Post-delivery activities include software modification, training,
and operating a help desk.”

 This definition is consistent with the approach to systems taken by the

International Organization for Standardization (ISO) in its standard on software
life cycle processes. It definitively dispels the image that systems maintenance is
all about fixing defects or mistakes. It is also consistent with the MDIT System
Engineering Methodology (SEM) which introduces maintenance in the Initiation
and Planning Stage (Chapter 3, Activity 3.2).

 The maintenance of software systems is motivated by a number of factors:

• To provide continuity of service: This entails fixing defects, recovering
from failures, and accommodating changes in the operating system and
hardware.

1.2 System Maintenance Definitions and Categories Introduction

Date: August 2007 Introduction Chapter 1
 Page 5

• To support mandatory upgrades: These are usually caused by changes in
government regulations, and also by attempts of vendors to maintain a
competitive edge of rival products. These are not to be mistaken for
enhancements.

• To support user requests for certain improvements: An example would be

performance tuning.

• To facilitate maintenance work: This usually involves code and database
restructuring and updating documentation.

Maintenance
Categories: Maintenance involves activities or costs associated with the ongoing upkeep of

the application. Maintenance includes all break/fix requests, optimizing the
application, operational support and change management for all requirements
identified by MDIT personnel. Major adaptive changes (e.g. addition of costly
new user requirements or porting the system to a new platform) should be
carried out as separate new development projects using the SEM.

 Types of maintenance are:

• Emergency Maintenance (break/fix): Unscheduled corrective
maintenance. While not specifically addressed in the SMG, emergency
maintenance is classified into two categories:

o Production Issues: Issues that stop business operations and must

be corrected ASAP. They are performed outside the SMG Release
Management process (see Chapter 2 of this guidebook) and
involve greater risk due to reduced levels of quality assurance and
testing.

o Urgent Issues: Issues that do not stop business operations, but
have a significant impact on them. These issues are corrected on an
accelerated basis, using standard SMG processes but outside the
Release Management process.

• Corrective Maintenance: Identify and remove non-break/fix defects;

correct actual errors. These issues are identified and processed according
to the SMG and specific system governance in place. They are grouped
into planned, scheduled maintenance releases by priority status. Inclusion
in the release is determined first by the priority set by the business and
secondly by MDIT analysis of resource requirements and dependencies.
These are prioritized into two (2) categories:

o Important: Issues that are identified within the standard

governance process, but which are deemed important. Generally

1.2 System Maintenance Definitions and Categories Introduction

Date: August 2007 Introduction Chapter 1
 Page 6

speaking, these issues will be resolved in the earliest scheduled
maintenance release possible

o Routine: Issues that are routinely identified and prioritized by the

client. These issues then flow into the Release Management
process.

• Perfective Maintenance: Improves the system without changing its

functionality; improves performance, dependability, and maintainability,
safety, reliability, efficiency or cost-effectiveness of operation.

• Adaptive Maintenance: Modifies the system to keep it up to date with its
environment; adapt to a new/upgraded environment by providing new
functionality to address requirements that crop up due to changes in the
environment (hardware, interfaces, operating system, middleware) or new
regulations that impact client operations.

• Preventive Maintenance: Identifies and detects latent faults. Changes to
the existing system so as to reduce the risk of failure while operating.
Preventive maintenance is not specifically addressed in this guide.

1.3 System Maintenance Effort Introduction

Date: August 2007 Introduction Chapter 1
 Page 7

Section: 1.3 System Maintenance Effort

Costs: Understanding the categories of system maintenance helps to understand the

structure of systems maintenance effort. Also, understanding the factors that
influence the maintainability of a system can help to manage available system
maintenance resources.

 The current industry standard distribution of maintenance effort across the four

system maintenance categories is as follows:

Corrective (approx. 21%)
• 12% emergency
• 9% routine

Adaptive (approx. 25%)

• 18% data environment adaptation
• 7% changes to hardware or operating system

Perfective (approx. 50%)

• 41% enhancements for users
• 6% improve documentation
• 3% other

Preventive (approx. 4%)

• 4% improve code efficiency

 System maintenance consumes a major share of system lifecycle financial

resources. A common perception of system maintenance is that it merely fixes
faults. However, studies and surveys over the years have indicated that almost
80% of the system maintenance effort is used for non-corrective actions. One
researcher describes the way in which system maintenance managers often group
enhancements and corrections together in their management reports. This
inclusion of enhancement requests with problem reports contributes to some of
the misconceptions regarding the high cost of corrections.

Factors: Some of the technical and non-technical factors affecting system maintenance

efforts are:

• Application type
• System novelty
• System maintenance staff availability
• System life span
• Hardware characteristics
• Quality of system design, construction, documentation and testing

1.3 System Maintenance Effort Introduction

Date: August 2007 Introduction Chapter 1
 Page 8

 As already noted, many system maintenance activities are similar to those of
systems engineering. System maintenance staff perform analysis, design, coding,
testing and documentation. They must track requirements in their activities just as
is done in development, and update documentation as baselines change.

 System maintenance staff may also perform supporting activities, such as system

maintenance planning, system configuration management, verification and
validation, system quality assurance reviews, audits and user training.

1.4 Call for Projects Introduction

Date: August 2007 Introduction Chapter 1
 Page 9

Section: 1.4 Call for Projects

Process: Call for Projects (quarterly, semi-annually or annually, including maintenance)

Responsibility: Client Services Director, System Maintenance Team

Description: The Client Services Director (CSD) along with the appropriate system managers

and client representatives update strategic plans and identify system engineering
business objectives to be addressed in the next fiscal year or portion thereof.

 During the Call for Projects, business objectives are identified, categorized, and

assigned an initial priority ranking. Each objective is evaluated to determine its
classification and handling priority. Maintenance objectives should be identified
according to the maintenance types identified in Section 1.2 – System
Maintenance Definition and Categories. The factors discussed in Section 1.2
should be considered when assigning a priority to maintenance requests.

 The CSD will develop the Maintenance and Operations Strategy (MOS), the

Resource Plan and Budget Estimate. These documents will be delivered to the
client for review and approval.

Exhibit 1.4-1 Call for Projects Process Flow

Call for
Projects

SEM
Processes

. .

New Development
Requests

Maintenance
Requests

Planned

Planned and
unplanned

Business
Objectives

Input: Input to the Call for Projects is one or more business objectives.

Process: If a modification to a system is required, the following activities must occur

within the call for projects process:

• Assign an identification number
• Categorize the type of maintenance
• Analyze the modification to determine whether to accept, reject, or further

1.4 Call for Projects Introduction

Date: August 2007 Introduction Chapter 1
 Page 10

evaluate
• Prioritize the modification according to the following categories:

o Mandatory (e.g., legal, safety, payroll)
o Standard: Issues identified that can be placed into the standard Release

Schedule. These have 2 priorities:
 Important: Has associated benefits; e.g., productivity gains, new

business drivers
 Routine: Nice to have (lower priority)

Control: Business Objectives and process determinations are uniquely identified.

Outputs: The outputs of the Call for Projects are listed below:

• Business Objectives Document (quarterly, semi-annually or annually)
• Initial requirements list
• Initial prioritization and categorization
• Verification data (for corrective modifications)
• Maintenance and Operations Strategy (quarterly, semi-annually or

annually)
• Resource Plan (quarterly, semi-annually or annually)
• Budget Estimate (quarterly, semi-annually or annually)

Chapter 2.0 Release Management

Date: August 2007 Release Management Chapter 2
 Page 11

Chapter: 2.0 Release Management

Description: Release Management is the discipline of managing software releases. Releases

themselves are a uniquely identified set of files (or perhaps just a single file) that
constitute the software release. Binding system maintenance and its related
release management activities to existing project management and system
engineering processes – as does this guidebook – increases the success rate of
release management efforts.

 The goals of Release Management are:

• Deployment of high-quality release products
• Usage of repeatable, cost-effective process for deploying Releases
• Timely and accurate “building” of Releases

Some of the challenges faced in the Release Management process are:

• Undetected Software Defects
• Outstanding Issues
• Outstanding Risks
• Software Change Requests
• New Development Requests (additional features and functions)
• Packaging and Deployment
• New Development Tasks yet to be completed

Active management of the release process and products provides the project
manager (or software release manager) with the following information for use in
meeting the above listed challenges:

• What went into the release?
• When was the release deployed?
• Where was the release deployed?
• Why was it deployed?
• How were defects handled when they were reported ?

As software systems, software development processes, and related resources
become more distributed, they invariably become more specialized and complex.
Software products, especially web applications, are typically in an ongoing cycle
of development, testing, and release. Add to this the evolution and growing
complexity of the platforms on which systems run, it becomes clear there are
many moving pieces that must seamlessly fit together to guarantee the success
and long-term value of a product or project.

Chapter 2.0 Release Management

Date: August 2007 Release Management Chapter 2
 Page 12

Discussion: A release is defined according to the needs of the users. This means that:

• Solutions to urgent problems are released as soon as possible only
to people experiencing the problem, or who are likely to
experience the problem;

• Other changes are released when the users are ready to

accommodate them.

Once one or more changes are developed, tested, and packaged into releases for
deployment, release management is responsible for introducing these changes into
the production IT environment and managing their release. Release management
also contributes to the efficient introduction of changes by bundling them into one
release and deploying them together.

The goal of release management processes is to ensure that all changes are
deployed successfully into the production IT environment in the least disruptive
manner. Therefore, release management is responsible for:

• Driving the release strategy, which is the overarching design, plan, and

approach for deployment of a change into production in collaboration with
the change control board (CCB).

• Determining the readiness of each release based on release criteria (quality
of release, release package and production environment readiness, training
and support plans, rollout and back-out plans, and risk management plan).

 Release management:

• Provides a packaged release for all changes deployed into production and
only deploys changes approved by change management.

• Needs change management to approve changes and track them throughout
the release process.

• Ensures that, as changes are made, those changes are reported to
configuration management for entry in the configuration management
database (CMDB).

• Needs configuration management information to build and verify valid
test environments in the development phase of the new release.

• Needs configuration management to assess the impact of changes to the IT
environment and to provide a definitive store for the release package.

Release Management is reliant on Change Management and Configuration
Management processes, and is embedded within the change management process.
Exhibit 2.0-1 Release Process Responsibilities and Interactions broadly describes
the responsibilities and interactions of these three functions.

Chapter 2.0 Release Management

Date: August 2007 Release Management Chapter 2
 Page 13

Exhibit 2.0-1 Release Process Responsibilities and Interactions

Change Management Configuration Management Release Management

• Provides authorization
and tracking processes
(Request For Change
[RFC], change log, and
reviews) to ensure only
approved changes are
deployed.

• Needs configuration
management to assess
impact of change on all
potential Configuration
Items (CIs).

• Needs release
management to package
changes for successful
deployment with
minimal disruption to
production.

• Provides a managed
database (CMDB) for
change logs, RFCs,
software library,
hardware store, release
package, and all CIs.

• Needs change
management to ensure
that only approved
changes are deployed
and all tracking of the
authorization process is
complete.

• Needs release
management to update
the CMDB with the
release package after
deployment.

• Provides a packaged
release for all changes
deployed into
production.

• Needs change
management to
approve changes and
track them throughout
the release process.

• Needs configuration
management to assess
impact of changes to
CIs and to provide a
definitive store for the
release package.

Objectives of
Release
Management: The objectives of Release Management are to:

• Plan releases in line with requirements resulting from approved changes.
• Build effective release packages for the deployment of one or many

changes into production.
• Test release mechanisms to ensure minimum disruption to the production

environment.
• Review preparation for the release to maximize deployment success.
• Deploy the release in line with structured implementation guidelines.

The release management process begins once change management approves a
request for change (RFC) and any solutions pertaining to it have been developed
and are considered completed for release into the production environment.

Deploying any release into the production environment involves risks to the
availability and reliability of that environment. All affected personnel need to be
aware of the potential risks involved in the deployment. Recognizing this, the
project manager should ensure that the appropriate managers agree on and sign
off on the release strategy document before the release moves into the design and
construction stages.

Chapter 2.0 Release Management

Date: August 2007 Release Management Chapter 2
 Page 14

Types of releases: Releases are allocated to one of three types:

• Major
• Minor
• Emergency (includes defect repair)

 Exhibit 2-0.2 shows how the types of releases differ according to whether

• Adaptive changes have been made
• Perfective changes have been made
• Corrective changes have been made
• All or selected software configuration items are included in the

release
• All or selected users will receive the release

Exhibit 2-0.2 Major, Minor and Emergency Releases

 Adaptive
Changes

Perfective
Changes

Corrective
Changes

Config.
Items Users

Major
Release Yes Yes Yes All All

Minor
Release Small Yes Yes All All

Emergency
Release No No Yes Selected Selected

Major Release
The purpose of a major release of a software system is to provide new
capabilities. These require adaptive changes. Major releases may also include
other maintenance types. Operations may have to be interrupted for some time
after a major release has been installed because training is required. Major
releases should therefore not be made too frequently because of the disruption
they can cause. A typical time interval between major releases is one year.
Projects using evolutionary and incremental delivery lifecycle approaches would
normally make a major release in each transfer phase. Major releases should
follow the SEM.

Minor Release
The purpose of a minor release is to provide corrections to a group of problems.
Some low-risk perfective maintenance changes may be included. A minor release
of a software system may also provide small extensions to existing capabilities.
Minor releases should not occur more frequently than monthly in order to gain
efficiencies. Such changes can be easily assimilated by users without training.

Chapter 2.0 Release Management

Date: August 2007 Release Management Chapter 2
 Page 15

Minor releases should follow either the SEM or SEM Express, depending on size
and complexity of the project.

The frequency of minor releases depends upon the:

• Rate at which software problems are reported;
• Urgency of solving the software problems.

Emergency Release
The purpose of an emergency release is to get a modification to the users who
need it as fast as possible. Only the configuration items directly affected by the
fault should be released. Changes are nearly always corrective.

Release Numbering: Regardless of their type, all maintenance releases should be assigned a number

unique to its state. The structure of the numbering should reflect the different
types of maintenance performed. The release number is identified by the full
combination of its various numbering components. These components are:

• Major Release Number (Version)
• Minor Release Number
• Modification Release Number (Revision)

version number.release number.modification number[.emergency release number]

The square brackets indicate that the emergency release number is
optional because it is only included when it is not zero. When any portion
of a release number is incremented, the succeeding numbers are set to
zero.

Chapter 2.0 Release Management

Date: August 2007 Release Management Chapter 2
 Page 16

Version numbers provide the benefit of allowing development and support staff to
know exactly what code is running – be it in test or in production - so that they
know what defects might affect a problem.

Chapter 3.0 System Maintenance

Date: August 2007 System Maintenance Chapter 3
 Page 17

Chapter: 3.0 System Maintenance

Description: The basic maintenance process model includes input, process, output, and

control. It is based on the same information systems engineering principles
and preferred practices that lower risk and improve quality, as described in
the SEM. The Systems Maintenance Guidebook (SMG) process model is
founded on the concept that planned changes should be grouped and
packaged into scheduled releases that can be managed as projects. This
proven approach allows the maintenance team to better plan, optimize the
use of resources, take advantage of economies of scale, and better control
outcome in terms of both schedule and product quality.

Each organization performing system maintenance activities should have a
local documented procedure for handling emergency changes that cannot
be implemented as part of a scheduled release. Generally, these changes
include fixes to correct defects and updates to meet unscheduled business
or legal requirements. For purposes of software configuration
management, emergency changes should also be integrated into the
next release for full regression testing and documentation updates.

Stages: The activities performed during maintenance are grouped into logically

related segments of work called "stages." The maintenance stages follow
the same format as the SEM stages, with the exception that the Functional
and System Design stages are combined into a single stage. The remainder
of this guidebook tailors system maintenance activities along the lines of
the full SEM. The stages are presented in the sections listed below.

3.1 Initiation and Planning
3.2 Requirements Definition
3.3 Design
3.4 Construction
3.5 Testing
3.6 Implementation

A matrix depicting the maintenance process model is provided in Exhibit
3.0-1, Process Model for Maintenance.

Note: The maintenance process model does not presume the use of any
particular type of information systems development methodology (e.g.,
waterfall, spiral). This process is valid regardless of size, complexity,
criticality, application of the product, or usage of the product in the system
to be maintained.

As with the SEM, maintenance stages can be tailored (i.e., logically combining
stages or outputs) as appropriate. Stages may also be combined to more
effectively manage the project. The project manager has the discretion to combine

Chapter 3.0 System Maintenance

Date: August 2007 System Maintenance Chapter 3
 Page 18

stages that are agreed to by the designated approvers during the Initiation and
Planning Stage. Factors that can influence the final number of stages include level
of effort, complexity, visibility, and business impact. Guidance to assist with
decisions to combine stages is presented in Chapter 2 of the SEM.

Project
Management: To the extent possible, all maintenance activity should be managed as a project to

gain the benefits inherent in project management and to enable tracking of
activities and costs. The extent of project management activity will vary, and
should be tailored according to the size, complexity, and impact of the change or
enhancement. Refer to Chapter 1.6 of the Project Management Methodology
(PMM) for more information.

Touch Points: The following areas within DIT may be involved in System Maintenance efforts.

Refer to the respective stages in the full SEM for additional guidance for
interaction with these other entities.

• Enterprise Architecture (EA)
• Office of Enterprise Security (OES)
• MDIT Contracts and Procurement
• Infrastructure Services
• E-Michigan

Structured
Walkthrough (SWT)
Review Process: In each stage (see Exhibit 3.0-1, Process Model for Maintenance), one or more

structured walkthroughs are conducted to validate work products. The Structured
Walkthrough (SWT) is a more formal review and is prescribed by the SEM for all
project deliverables. SWTs are used to find and remove errors from work
products early and efficiently, and to develop a better understanding of defects
that might be prevented. They are very effective in identifying design flaws,
errors in analysis or requirements definition, and validating the accuracy and
completeness of deliverable work products.

 SWTs are conducted at various times in the maintenance process. Refer to the

SEM for guidance. They typically require some advance planning activities, a
formal procedure for collecting comments, specific roles and responsibilities for
participants, and have prescribed follow-up action and reporting procedures.
Frequently reviewers include people outside of the developer's immediate peer
group.

 Responsibility
 Project Manager

 Work Products
 The SWT Meeting Record form (DIT-0187) is available for the reviewers to

record errors found prior to the walkthrough session, and for the scribe to record

Chapter 3.0 System Maintenance

Date: August 2007 System Maintenance Chapter 3
 Page 19

information discussed during the walkthrough. Upon completion, the presenter or
author of the work product compiles a SWT Management Summary Report (DIT-
0188) and a copy is placed in the Project File.

 The State of Michigan guidance document titled Structured Walkthrough Process

Guide provides a procedure and sample forms that can be used for SWTs. This
document is available on the MDIT SUITE website.
(http://www.michigan.gov/suite)

Stage Exit
Review Process: The Stage Exit Review is a process for ensuring a project meets the project

standards and milestones identified in the project plan. The Stage Exit Review is
conducted by the project manager with the project stakeholders, (e.g., system
owner and the following points of contact: user, quality assurance, security,
architecture and standards, project sponsor, and platform specialists.)

 It is a high-level evaluation and approval of all work products developed in a

lifecycle stage. It is assumed that each deliverable has undergone a SWT as
appropriate prior to the Stage Exit Review process. The Stage Exit Review
focuses on the satisfaction of all requirements for the stage of the lifecycle, rather
than the specific content of each deliverable.

 The goal of a Stage Exit Review is to secure the approval of designated key

individuals to continue with the project and to move forward into the next
lifecycle stage. It indicates that all qualifications (issues and concerns) have been
closed or have an acceptable plan for resolution. During the Stage Exit Review,
the project manager communicates the positions of the key personnel, along with
qualifications raised during the stage exit process, and the action plan for
resolution to the project team, stakeholders, and other interested meeting
participants.

 The Stage Exit Review is documented in summary form using the Stage Exit

Position Response form (DIT-0189). Only one Stage Exit Review for each stage
should be necessary to obtain approval assuming all deliverables have been
accepted as identified in the project plan.

 A Stage Exit is an effective project management tool that is required for all

projects regardless of size. For small projects, stages can be combined and
addressed during a Stage Exit.

 Responsibility
 Project Manager.

 Work Products
 A summary of the Stage Exit Review is prepared by the project manager or a

designee and distributed to the meeting attendees. The summary identifies any
issues and action items needed to obtain concurrence prior to proceeding to the
next lifecycle stage.

Chapter 3.0 System Maintenance

Date: August 2007 System Maintenance Chapter 3
 Page 20

 The MDIT guidance document titled Stage Exit Process Guide provides a

procedure and sample report form that can be used for Stage Exits. This document
is available on the MDIT SUITE website.

Metrics: Metrics/measures and associated factors for each stage should be collected and

reviewed at appropriate intervals. Exhibit 3.0-2, Process Model Metrics for
Maintenance, provides metrics for each stage of maintenance. Metrics/measures
captured for maintenance should enhance the implementation and management of
this process.

Chapter 3.0 System Maintenance

Date: August 2007 System Maintenance Chapter 3
 Page 21

Exhibit 3.0-1 Process Model for Maintenance

Initiation and
Planning

Requirements

Definition

Design

Construction

Testing

Implementation

Input

- Modification
Request (MR)

- Project/system
document
- Project file
information
- Validated MR

- Project/system
document
- Existing source
code
- Database(s)
- Analysis stage
output

- Current source code
- Product/system
document
- Results of design
 stage

- Updated documentation
- Test Readiness Review Report
- Integrated system
- Acceptance test:
 Plans, Cases, Procedures - Updated
system
- Project / Maintenance Plan

- Tested/accepted/ baselined
system

Process

- Assign change
number
- Categorize
- Accept or reject
change
- Preliminary effort
estimate

- Detailed analysis
- Re-document, if
 needed

- Revise:
 Requirements
 System doc.
 Module doc.
 Project plan
 Create test cases

- Code
- Unit test
- Test Readiness
Review
- Revisit project risk

- Functional test
- Interface testing
- Interoperability test
- Regression testing
- Test Readiness Review
- User Acceptance Test (UAT)
- Functional Configuration Audit
(FCA)

- Physical Configuration
Audit (PCA)
- Install
- Training
- User notification
- Archival system for
backup

Output

- Validated MR
Process
determinations

-Updated:
 Requirements
 Modification list
 Test strategy
 Project plan

- Revised:
 Modification list
 Detailed analysis
- Updated:
 Design baseline
 Test plans
 Project plan
 Constraints and
risks

- Updated:
 Design documents
 Test documents
 User documents
 Training materials
 Project plan
- Statement of risk
- Test readiness review
report

- Tested system
- Test reports
- New system baseline
- Updated project plan
- Test Readiness review report
- FCA Report

- PCA Report
- Version Description
Document (VDD)

Review
Assurance
Approve

- Structured
Walkthrough(s)
- Stage Exit Review

- Structured
 Walkthrough(s)
- Stage Exit Review

- Structured
 Walkthrough(s)
- Stage Exit
Review

- Structured
 Walkthrough(s)
- Stage Exit Review

- Structured Walkthrough(s)
- Stage Exit Review

- Structured Walkthrough
- Stage Exit Review

Metrics

See Exhibit 3.0-2, Process Model Metrics for Maintenance

Chapter 3.0 System Maintenance

Date: August 2007 System Maintenance Chapter 3
 Page 22

Exhibit 3.0-2 Process Model Metrics for Maintenance

Initiation and Planning

Requirements

Definition

Design

Construction

Testing (includes

Acceptance)

Implementation

Factors

- Correctness
- Maintainability

- Flexibility
- Traceability
- Usability
- Reusability
- Maintainability
-Comprehensibility

- Flexibility
- Traceability
- Reusability
- Testability
- Maintainability
-Comprehensibility
- Reliability

- Flexibility
- Traceability
- Maintainability
-Comprehensibility
- Reliability

- Flexibility
- Traceability
- Verifiability
- Testability
- Interoperability
-Comprehensibility
- Reliability

- Completeness
- Reliability

Metrics

- Number of omissions
on Modification
Request (MR)

- Number of MR
submittals

- Number of duplicate
MRs

- Time expended for
problem validation

- Requirement
changes

- Documentation
error rates

- Effort per
function area (e.g.,
SQA)

- Elapsed time
(schedule)

- Error rates, by
priority and type

S/W complexity

Design changes

Effort per function
area

Elapsed time

Test plans and
procedure changes

Error rates, by
priority and type

Number of lines of
code, added,
deleted, modified,
tested

- Volume /
functionality
(function points or
lines of code)

- Error rates, by
priority and type

- Error rates, by
priority and type

- Generated

- Corrected

Documentation
changes (i.e.
version description
documents, training
manuals, operation
guidelines)

Note: The above level of metrics is a goal. Each organization responsible for maintenance activities should establish an individual plan to

achieve this level over time.

3.1 Initiation and Planning Stage System Maintenance

Date: August 2007 System Maintenance Chapter 3
 Page 23

Section: 3.1 Initiation and Planning Stage

Responsibility: System Maintenance Team

Description: In this stage, product changes are identified, categorized, and assigned an initial

priority ranking by the client. Each request for a modification (i.e., Modification
Request) is evaluated by MDIT to determine its classification and evaluated by
the client to determine its handling priority. The classification should be
identified from the following types of maintenance.

• Emergency - Unscheduled corrective maintenance required to keep a

system operational.
• Corrective - Change to a product after implementation to correct defects.
• Adaptive - Change to a product after implementation to keep it

functioning properly in a changed or changing environment.
• Perfective - Change to a product after implementation to improve

performance or maintainability.

The need for modifications can be driven by any number of factors, including:

• Report of system malfunction.
• Operational system upgrades and new versions of resident software (e.g.,

COBOL, Oracle, .Net).

These factors should be considered when assigning a priority to the modification
request. Exhibit 3.1-1 Initiation and Planning Stage summarizes the input,
process, control, and output for the Initiation and Planning Stage of maintenance.

Input: Input to the Initiation and Planning Stage of maintenance is one or more

Modification Requests.

Process: If a modification to the product is required, the following activities must occur

within the maintenance process.

• Assign an identification number
• Categorize the type of maintenance
• Analyze the modification to determine whether to accept, reject, or further

evaluate
• Prioritize the modification according to the following categories:

ο Emergency (follow emergency change procedure and integrate into the
next scheduled release or block of modifications)

ο Mandatory (e.g., legal, safety, payroll)
ο Required (has associated benefits; e.g., productivity gains, new

business drivers)
ο Nice to have (lower priority)

3.1 Initiation and Planning Stage System Maintenance

Date: August 2007 System Maintenance Chapter 3
 Page 24

Touch Points: Refer to Chapter 3 of the SEM for guidance on potential touch points for the
Initiation and Planning Stage.

Outputs: An additional output of this stage is the validated Modification Request and the

following process determinations. Place a copy of all work products in the
Project File.

• Statement of the problem or new requirement.
• Problem or requirement evaluation.
• Categorization of the type of maintenance required.
• Initial priority.
• Verification data (for corrective modifications).
• Initial high-level estimate of resources required.
• Assignment to scheduled release.

Review Processes: Structured Walkthrough (SWT)
 Perform a Structured Walkthrough using the procedures and sample forms

prescribed in the Structured Walkthrough Process Guide, available on the MDIT
SUITE website.

 Stage Exit Review
 Using the procedures and sample report form prescribed in the Stage Exit Process

Guide, schedule and perform a Stage Exit Review as the last activity of the
Initiation and Planning Stage. This will enable project approvers to review project
deliverables and provide a concur/non-concur position to the project manager.
The Stage Exit Process Guide is available on the MDIT SUITE website.

Exhibit 3.1-1 Initiation and Planning Stage

Initiation and
Planning

Uniquely identify Modification Request
Enter Modification Request into Project File

Stage Exit Review

Validated Modification
Request
Process determinations

Modification Request

3.2 Requirements Definition Stage System Maintenance

Date: August 2007 System Maintenance Chapter 3
 Page 25

Section: 3.2 Requirements Definition Stage

Responsibility: Project Team and System Owner

Description: During the Requirements Definition Stage, the Project File information, the

Modification Request(s) validated in the Initiation and Planning Stage, and the
system and project documentation are used to study the feasibility and scope of
the modification, and to develop a preliminary Project Plan for design, test, and
delivery.

If the documentation is not available or is insufficient and the source code is the
only reliable representation of the system, reverse engineering is recommended to
ensure the overall integrity of the system. In those cases where long-lived
systems have overgrown the initial base system and have poorly updated
documentation, reverse engineering may be required. The IEEE Standard for
Software Maintenance suggests that the process of reverse engineering evolves
though the following six steps:

For a smaller scope, or for local analysis on a unit level:

• Dissection of source code into formal units
• Semantic description of formal units and declaration of functional units
• Creation of input/output schematics of units

For a larger scope, or for global analysis on a system level:

• Declaration and semantic description of linear flows
• Declaration and semantic description of system applications (functions

grouped)
• Creation of anatomy of the system (system architecture)

Modifications of a similar nature (i.e., affecting the same program(s)) should be
grouped together whenever possible, and packaged into releases that are managed
as projects. A release cycle should be established and published.

Exhibit 3.2-1 Requirements Definition Stage summarizes the input, process,
control, and output for the Requirements Definition Stage.

Input: Input to the Requirements Definition Stage of maintenance includes the

following.

• Validated Modification Request
• Initial resource estimate and associated information
• Project and system documentation, if available

3.2 Requirements Definition Stage System Maintenance

Date: August 2007 System Maintenance Chapter 3
 Page 26

Process: Preliminary analysis activities include the following.

• Make a preliminary estimate of the modification size/magnitude
• Assess the impact of the modification
• Assign the Modification Request to a block of modifications scheduled for

implementation
• Coordinate the modifications with other ongoing maintenance tasks

Once modifications are agreed to, grouped if appropriate, and packaged, analysis
progresses and includes the following:

• Define firm requirements for the modification
• Identify elements of the modification
• Identify safety and security issues
• Devise a test and implementation strategy
• Detailed time estimate, fit analysis in release cycle and confirmation of

project schedule

In identifying the elements of the modification (creating the preliminary
modification list), examine all work products (e.g., system specifications,
databases, and documentation) that are affected. Each work product is identified,
and generated, if necessary, specifying the portion of the product to be modified,
the interfaces affected, the user-noticeable changes expected, the relative degree
and kind of experience required to make changes, and the estimated time to
complete the modification.

The test strategy is based on input from the previous activity identifying the
elements of modification. Requirements for at least three levels of testing,
including individual unit tests, integration tests, and user-oriented functional tests
are defined. Regression test requirements associated with each of these levels of
testing are identified as well. The test cases to be used for testing to establish the
test baseline are revalidated.

Touch Points: Refer to Chapter 4 of the SEM for guidance on touch points for this stage.

Control: Control of the Requirements Definition Stage activities includes the following:

• Retrieval of the relevant version of project and system documentation
from the configuration control function of the organization

• Review of the proposed changes and engineering analysis to assess
technical and economic feasibility, and correctness

• Identification of safety and security issues
• Consideration of the integration of the proposed change within the existing

product
• Verification that all appropriate analysis and project documentation is

updated and properly controlled

3.2 Requirements Definition Stage System Maintenance

Date: August 2007 System Maintenance Chapter 3
 Page 27

• Verification that the test function of the organization is providing a
strategy for testing the change(s), and that the change schedule can support
the proposed test strategy

• Review of resource estimates and schedules; verification of accuracy
• Technical review to select the problem reports and proposed

enhancements to be implemented in the new release

Outputs: Outputs of the Requirements Definition Stage include the following new or

revised SEM artifacts:

• Updated requirements (including traceability list)
• Test strategy
• Project Plan

Review Processes: At the end of the Requirements Definition Stage, a risk analysis is performed.

Using the output of the Requirements Definition Stage, the preliminary resource
estimate is revised, and a decision is made on whether to proceed to the Design
Stage.

 Structured Walkthrough (SWT)
 Perform a Structured Walkthrough using the procedures and sample forms

prescribed in the Structured Walkthrough Process Guide, available on the MDIT
SUITE website.

 Stage Exit Review
 Using the procedures and sample report form prescribed in the Stage Exit Process

Guide, schedule and perform a Stage Exit Review as the last activity of the
Requirements Definition Stage. This will enable project approvers to review
project deliverables and provide a concur/non-concur position to the project
manager. The Stage Exit Process Guide is available on the MDIT SUITE website.

Exhibit 3.2-1 Requirements Definition Stage

Requirements
Definition

Conduct technical review
Verify that documentation is updated
Verify test strategy
Identify safety and security issues

Metrics/Measures
Structured Walkthrough(s)
Stage Exit Review

New or updated SEM
artifacts

Validated Mod. request
Project/system document.
Project File information

3.3 Design Stage System Maintenance

Date: August 2007 System Maintenance Chapter 3
 Page 28

Section: 3.3 Design Stage

Responsibility: Project Team

Description: In the Design Stage, all current system and project documentation, existing

software and databases, and the output of the Requirements Definition Stage are
used to design the modification to the system. Exhibit 3.3-1 summarizes the
input, process, and output for the Design Stage of maintenance.

Input: Input to the Design Stage of maintenance includes the following:

• Requirements Definition Stage output, including:
ο Detailed analysis
ο Updated statement of requirements
ο Preliminary modification list (identification of affected elements)
ο Test strategy
ο Project Plan

• System and project documentation.
• Existing source code, comments, and databases.

Process: The process steps for the Design Stage include the following:

• Identify selected modules
• Modify module documentation (e.g., data and control flow diagrams,

schematics)
• Create test cases for the new design, including safety and security issues
• Identify/create regression tests
• Identify documentation (system/user) update requirements
• Update modification list
• Document any known constraints that influence the design, and any risks

that have been identified. Where possible, actions, taken or
recommended, that mitigate risk should also be documented.

Touch Points: Refer to Chapters 5 (Functional Design Stage) and 6 (System Design Stage) of the

SEM for guidance on touch points for this stage.

Control: The following control activities are performed during the Design Stage:

• Verify that the new design is documented as an authorized change
• Verify the inclusion of new design material, including safety and security

issues
• Verify that the appropriate test documentation has been updated
• Complete the traceability of the requirements to the design

Outputs: Outputs of the Design Stage include the following new or revised SEM artifacts:

3.3 Design Stage System Maintenance

Date: August 2007 System Maintenance Chapter 3
 Page 29

• Revised modification list
• Updated design baseline
• Updated test plans
• Revised detailed analysis
• Verified requirements
• Updated Project Plan
• Documented constraints and risks

Review Processes: Structured Walkthrough (SWT)
 Perform a Structured Walkthrough using the procedures and sample forms

prescribed in the Structured Walkthrough Process Guide, available on the MDIT
SUITE website.

 Stage Exit Review
 Using the procedures and sample report form prescribed in the Stage Exit Process

Guide, schedule and perform a Stage Exit Review as the last activity of the
Design Stage. This will enable project approvers to review project deliverables
and provide a concur/non-concur position to the project manager. The Stage Exit
Process Guide is available on the MDIT SUITE website.

Exhibit 3.3-1 Design Stage

Design

Verify that design is documented
Ensure traceability of requirements to design

Metrics/Measures
Structured Walkthrough(s)
Stage Exit Review

New or updated
SEM artifacts

System/project document
Analysis Stage output
Source code, database

3.4 Construction Stage System Maintenance

Date: August 2007 System Maintenance Chapter 3
 Page 30

Section: 3.4 Construction Stage

Responsibility: Project Team

Description: In the Construction Stage, the results of the Design Stage, the current source code,

the project and system documentation, (i.e., the entire system as updated by the
prior stages) is used to drive the construction effort. Exhibit 3.4-1 summarizes the
input, control, and output for the Construction stage.

Input: Input to the Construction Stage of maintenance includes the following:

• Results of the Design Stage
• Current source code, comments, and databases
• Project and system documentation

Process: The Construction Stage includes the following tasks, which may be conducted in

an incremental, iterative approach:

• Coding and unit testing
• Integration
• Revisit project risk
• Test readiness review

Refer to the SEM for details on coding, unit testing, integration testing and
regression testing. The SEM also provides guidance on risk analysis and review,
as well as reviewing for test readiness..

Touch Points: Refer to Chapter 7 of the SEM for guidance on touch points for this stage.

Control: Control of the Construction Stage includes the following activities:

• Ensure that unit and integration testing are performed and documented in
the Project File

• Ensure that test documentation (e.g., test plans, test cases, and test
procedures) are either updated or created

• Identify, document, and resolve any risks exposed during software and test
readiness reviews

• Verify that the new product is placed under configuration management
control

• Verify that the training and technical documentation have been updated
• Verify the traceability of the design to the code

Outputs: Outputs of the Construction Stage includes the following new or revised SEM

artifacts:

3.4 Construction Stage System Maintenance

Date: August 2007 System Maintenance Chapter 3
 Page 31

• Updated system
• Updated design documentation
• Updated test documentation
• Updated user documentation
• Updated training material
• Statement of risk and impact to users
• Test Readiness Review report

Review Processes: Structured Walkthrough (SWT)
 Perform a Structured Walkthrough using the procedures and sample forms

prescribed in the Structured Walkthrough Process Guide, available on the MDIT
SUITE website.

 Stage Exit Review
 Using the procedures and sample report form prescribed in the Stage Exit Process

Guide, schedule and perform a Stage Exit Review as the last activity of the
Construction Stage. This will enable project approvers to review project
deliverables and provide a concur/non-concur position to the project manager.
The Stage Exit Process Guide is available on the MDIT SUITE website.

Exhibit 3.4-1 Construction Stage

Construction

Ensure testing performed and documented
Verify:

New software placed under CM
Documentation has been updated
Traceability of design to code

Metrics/Measures
Structured Walkthrough(s)
Stage Exit Review

 New or updated
SEM artifacts

Results of Design Stage
Source code
Project documentation
System documentation

3.5 Testing Stage System Maintenance

Date: August 2007 System Maintenance Chapter 3
 Page 32

Section: 3.5 Testing Stage

Description: Testing is the process used to help identify the correctness, completeness,

security, and quality of developed application software. Testing is intended to
reveal quality-related information about the product with respect to the context in
which it is intended to operate. Testing can never completely establish the
correctness of arbitrary computer software; testing furnishes a 'criticism' or
comparison that compares the state and behaviour of the product against a
specification.

 An important point is that software testing should be distinguished from the

separate discipline of Software Quality Assurance (SQA), which encompasses all
business process areas, not just testing.

 Good testing involves much more than just running the program a few times to

see whether it works. Testing is the process of executing software in a controlled
manner; in order to answer the question “Does this code behave as specified?”

 Testing is used in association with verification and validation. Verification is the

checking of or testing of items, including software, for conformance and
consistency with an associated specification. Software testing is just one kind of
verification, which also uses techniques such as reviews, inspections, and walk-
throughs. Validation is the process of checking what has been specified is what
the user actually wanted.

• Validation: Are we doing the right job?
• Verification: Are we doing the job right?

Activities: See the SEM for guidance on Testing Activities, Inputs, Processes, Touch Points,

Controls, Outputs and Review Processes.

• System testing: in which the software is integrated to the overall product
and tested to show that all requirements are met (Exhibit 3.5-1)

• Interface testing: in which the proper interaction between system
components is verified

• Regression testing: in which earlier successful tests are conducted anew
to ensure that changes made in the software have not introduced new
defects/side effects

• User acceptance testing (UAT): upon which the acceptance of the
complete software is based. The clients do this testing. (Exhibit 3.5-2)

3.5 Testing Stage System Maintenance

Date: August 2007 System Maintenance Chapter 3
 Page 33

Exhibit 3.5-1 System Testing

System Testing

Place under Configuration Management:
Software code
Modification requests
Test documentation

Metrics/Measures
Structured Walkthrough(s)

New or updated
SEM artifacts

Updated software
Documentation
Test Read,
Review rpt.
Updated system

Exhibit 3.5-2 Acceptance Testing

Acceptance Testing

Execute acceptance tests
Report test results
Conduct functional audit
Establish new baseline
Acceptance test documentation under CM

Metrics/Measures
Structured Walkthrough(s)
Stage Exit Review – post completion of all testing tasks

New or updated
SEM artifacts

Test Readiness Review Rpt.
Fully integrated system
Acceptance Test Plan
Acceptance test cases
Acceptance test procedures

3.6 Implementation Stage System Maintenance

Date: August 2007 System Maintenance Chapter 3
 Page 34

Section: 3.6 Implementation Stage

Responsibility: Project Team

Description: This stage describes the requirements for the delivery of a modified system.

Exhibit 3.6-1 summarizes the input, process, control, and output for the
Implementation Stage.

Input: Input to the Implementation Stage of maintenance is the fully tested version of the

system as represented in the new baseline.

Process: The tasks for implementation of a modified system include the following:

• Conduct a Physical Configuration Audit (PCA)
• Notify the user community
• Develop an archival version of the system for backup
• Perform installation and training at the user facility

Touch Points: Refer to Chapter 9 of the SEM for guidance on any touch points for this stage.

Control: Control for the Implementation Stage includes the following:

• Arrange and document a Physical Configuration Audit
• Provide access to system materials for users, including replication and

distribution
• Complete the version description document
• Place under configuration management control

Outputs: Output of the Implementation Stage includes the following new or revised SEM

artifacts:

• Physical Configuration Audit report
• Version Description Document

The Version Description Document (VDD) contains information pertinent to the
version or release of the system that is being implemented. Information provided
includes system name, date delivered, version number, release number, brief
description of functionality delivered in the modification, and prerequisite
hardware and software with its associated version and release number. The
current VDD is placed together with VDDs from previous versions/releases to
form a complete chronology of the system from its initial implementation or
Version 1, Release 1.

3.6 Implementation Stage System Maintenance

Date: August 2007 System Maintenance Chapter 3
 Page 35

Review Processes: Structured Walkthrough (SWT)
 Perform a Structured Walkthrough using the procedures and sample forms

prescribed in the Structured Walkthrough Process Guide, available on the MDIT
SUITE website.

 Stage Exit Review
 Using the procedures and sample report form prescribed in the Stage Exit Process

Guide, schedule and perform a Stage Exit Review as the last activity of the
Implementation Stage. This will enable project approvers to review project
deliverables and provide a concur/non-concur position to the project manager.
The Stage Exit Process Guide is available on the MDIT SUITE website.

Exhibit 3.6-1 Implementation Stage

3.6 Implementation Stage System Maintenance

Date: August 2007 System Maintenance Chapter 3
 Page 36

Page inserted for consistency in section start points.

Glossary Glossary

Date: August 2007 Glossary Glossary
 Page 37

Glossary

Baseline - (1) An agreed-to description of the attributes of a product, at a point in time, which serves as
a basis for defining change. (2) An approved and released document, or a set of documents, each of a
specific revision; the purpose of which is to provide a defined basis for managing change. (3) The
currently approved and released configuration documentation. (4) A released set of files comprising a
software version and associated configuration documentation.

Configuration Audit – Configuration Audits determine to what extent the as-designed/as-tested/as-built
product reflects the required physical and functional characteristics specified in the requirements.
Functional Configuration Audit (FCA) and Physical Configuration Audit (PCA) are done once, to
establish the Product Baseline.

Development Baseline - The baseline comprising the software and associated technical documentation
that define the evolving configuration of the system during development. This baseline includes the
software design, and implemented code, database schema, and COTS products, and evolves into the
product baseline.

Fix number - an indicator of small updates that are to be built into a regular modification or release at a
later time. The version, release, modification, and fix levels together comprise the program level (or
version) of a program.

Functional Baseline - The baseline comprising documentation and possibly models that specify system
functional, data, and technical requirements.

Functional Configuration Audit (FCA) - An inspection to determine whether the (software)
configuration item satisfies the functions defined in specifications. Consists of someone acknowledging
having inspected or listed each item to determine it satisfies the functions defined in specifications.

Iteration - A distinct sequence of activities with a baselined plan and valuation criteria resulting in a
release.

Modification number - The modification level of a program, which is an indicator of changes that do
not affect the external interface of the program. The version, release, modification, and fix levels
together comprise the program level (version) of a program.

Physical Configuration Audit (PCA) - The formal examination of the "as-built" configuration of a
configuration item against its technical documentation to establish or verify the configuration item's
product baseline.

Program level - The version, release, modification, and fix levels of a program.

Regression Testing - The process of running a composite of comprehensive test cases that are always
run after system modifications to detect faults introduced by modification.

Release number - an indicator of changes to the external programming interface of the program. The
version, release, modification, and fix levels together comprise the program level (version) of a program.

http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/IBMp690/IBM/usr/share/man/info/en_US/a_doc_lib/aixuser/glossary/P.htm#SPTA207P113DF

Glossary Glossary

Date: August 2007 Glossary Glossary
 Page 38

Specification - A document that explicitly states essential technical attributes/requirements for a product
and procedures to determine that the product's performance meets its requirements/attributes.

Version - (1) One of several sequentially created configurations of a data/document product. (2) A
supplementary identifier used to distinguish a changed body or set of computer-based data (software)
from the previous configuration with the same primary identifier. Version identifiers are usually
associated with data (such as files, databases and software) used by, or maintained in, computers.

Version Description Document (VDD) - A document associated with a product release that describes
the version released and describes the versions of the items included in the product.

Version Number - An indicator of the hardware and basic operating system upon which the program
operates. The version, release, modification, and fix levels together comprise the program level (version)
of a program.

	
	Chapter: 1.0 Introduction
	
	Section: 1.1 Background
	Section: 1.2 System Maintenance Definition and Categories
	
	Section: 1.3 System Maintenance Effort
	Section: 1.4 Call for Projects

	Chapter: 2.0 Release Management
	Chapter: 3.0 System Maintenance
	Section: 3.1 Initiation and Planning Stage
	Section: 3.2 Requirements Definition Stage
	Section: 3.3 Design Stage
	Section: 3.4 Construction Stage
	Section: 3.5 Testing Stage
	Section: 3.6 Implementation Stage

